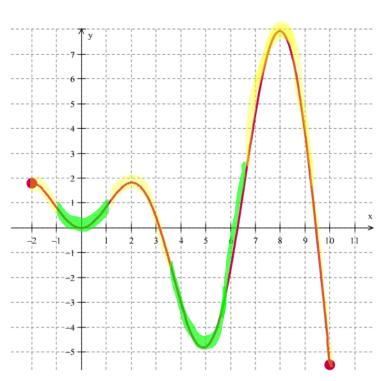

Wednesday, November 04, 2015 3:33 PM

Group

Discovery ...
Inserted from: <file://C:\Users\jorr\Desktop\Calculus\Unit 4 Derivative Graph App\Group Discovery Unit 4 Day 1.docx>

Look at the curves on that one!: An introduction to the shape of a graph



The endpoints of the graph are (-2, 1.8) and (10, -5.5). Label them.

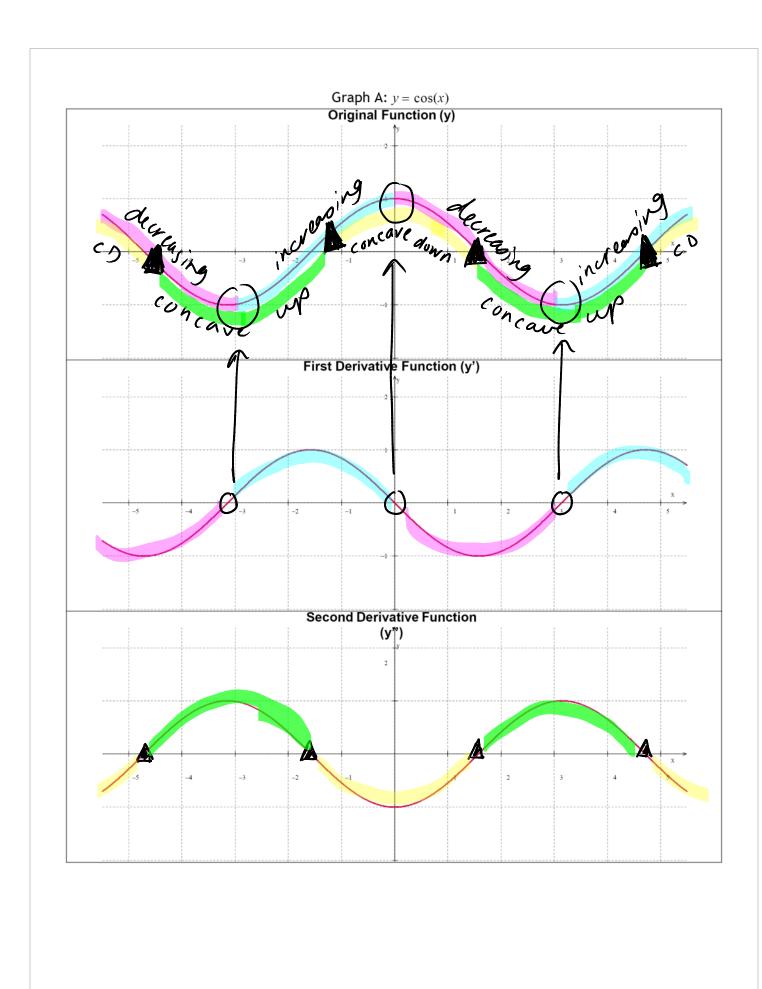
- (a) Drawasmalltriangleonallinflection points. Find the approximate coordinates of these points.
- (b) Draw a small circle at the top and bottoms of all humps/troughs. Find the approximate coordinates of these points.

NOW GRAB FOUR DIFFERENT COLORED MARKERS

- (1) Fill in this box with one of your markers:
- = increasing
- (2) Fill in this box with another marker:
- = decreasing
- (3) Trace over the part of the function which is *increasing* (obviously using the appropriate color). Do the same where the graph is *decreasing*.
- (4) Write in *interval notation* the x-values for which the function is increasing.
 - (0,2) (5,8)
- (5) Write in *interval notation* the x-values for which the function is decreasing.

- (1) Fill in this box with one of your markers:
- = concave up
- (2) Fill in this box with another marker:
- = concave down
- (3) Trace over the part of the function which is *concave up* (obviously using the appropriate color). Do the same where the graph is *concave down*.
- (4) Write in *interval notation* the x-values for which the function is concave up.
 - (-1, 1) (3.5, 6.5)
- (5) Write in *interval notation* the x-values for which the function is concave down.
 - [-2,-1) (1,3.5) (6,5,10]

Making Observations about Increasing/Decreasing


(c) Make an observation about what you can say about the points on the graph where the function switches from increasing to decreasing, or from decreasing to increasing.

slope = 0 max/min

- (d) Make an observation about what you can say about the *derivative* (the first derivative, to be specific) about a function when it is *increasing*.
- (e) Make an observation about what you can say about the *derivative* (the first derivative, to be specific) about a function when it is *decreasing*.
- (f) Make an observation about what you can say about the *derivative* (the first derivative, to be specific) about a function when is switching from *increasing* to *decreasing*, or from *decreasing* to *increasing*.

$$f' = C$$

<u>Use your markers</u> to trace over the <u>ORIGINAL FUNCTION ONLY</u> in the same way as on the front. Also, use triangles to mark inflection points and small circles to mark humps/troughs. Then, answer the following for the graphs on the right.
(h) Find the x-values where the first derivative is zero. Now look at those x-values on the original function . What do you notice?
max/mins
(i) Find the x-values where the second derivative is zero. Now look at those x-values on the original function . Do you notice anything about those points?
inflection pts
(j) Look at all x-values where the first derivative is positive. Now look at those x-values on the original function . What do you notice?
increasing
(k) Lookatallthex-values where the first derivative is negative. Now look at those x-values on the original function . What do you notice? (And is that true for all four functions?)
decreasing
(l) Look at all x-values where the second derivative is positive. Now look at those x-values on the original function . What do you notice?
concave up
(m) Look at all x-values where the second derivative is negative. Now look at those x-values on the original function . What do you notice?
concave down

