
## Unit 3 Day 3 Notes



Guided Notes 3.5 -... Inserted from: <<u>file://H:\Calculus\Units 2 - 6 Derivatives\Unit 3 Derivative Rules\Guided Notes 3.5 - 3.6.docx</u>>



$$Cost x^{2} \neq cost^{2} x$$
  
**Ex 2:** Find the derivative:  
a)  $y = sin(x^{2})$   $y' = cost(x^{2}) \cdot 2x = 2xcost x^{2}$   
b)  $y = sec(5x - 1)$   $y' = sec(5x - 1) + an(5x - 1) \cdot 5$   
c)  $y = \frac{sinx}{cosx}$   $y' = cost(x \cdot cost(x) - (sinx)) - sinx$   $= \frac{cos^{2}x + sin^{2}x}{cos^{2}x} \frac{1}{cos^{2}} + \frac{sec^{2}x}{cos^{2}}$   
 $y = tanx$   $y' = sec^{2}x$   $cos^{2}x$   $= -x^{2}sinx + 2xcost(x)$   
e)  $f(x) = tan(x - x^{3})$   
 $f'(x) = sec^{2}(2x^{3}) \cdot 6x^{2} = 6x^{2}sec^{2}(2x^{3}) = 6x^{2} [sec(2x^{3})]^{2} \cdot [2x]$   
**Ex 3:** Find y'' if  $y = tan(2x^{3})$   
 $y' = sec^{2}(2x^{3}) \cdot 6x^{2} = 6x^{2}sec^{2}(2x^{3}) + 6x^{2} + [sec(2x^{3})]^{2} \cdot [2x]$   
**Ex 4:** Find the slope of the line tangend to the curve  $y = sin^{5}x$  at  $x = \frac{\pi}{3}$   
 $derived yv \in y = (sinx)^{5}$   $y' = 5(sinx)^{4} \cdot cost(x)$   
**EX 4:** Find the derivative:  
 $y'(\frac{\pi}{3}) = 5(sin\frac{\pi}{3})^{4} \cdot cost(x)$   
**CMALLENGE:** Find the derivative:  
 $(x - x)^{2}$ 

$$f(x) = \left(\frac{x+1}{x^2}\right)^3$$

b) 
$$R = w^2 \sin(3w)$$

$$y = \sin^2(5x - 1)$$

d) 
$$g(x) = \sin(x^2) \sec(2x)$$