Problem Set
 (Area, Distance, and the Definite Integral)

1. Estimate the area under the graph of $f(x)=1+x^{2}$ from $x=-1$ to $x=2$ using 3 rectangles (same width) and the right endpoints. Then improve your estimate using 6 rectangles (same width) and the right endpoints.
2. A car traveling for 5 hours has a velocity given by
$v(t)=\left\{\begin{array}{l}40 \text { if } 0 \leq t \leq 2 \\ 50 \text { if } 2<t \leq 3 \\ 20+5 t \text { if } 3<t \leq 5\end{array}\right.$
What is the total distance traveled?
3. The speed of a runner increased steadily during the 1st 3 seconds of a race. Her speed at half-second intervals is given in the table. Find the lower and upper estimates for the distance that she traveled during these 3 seconds.

t in seconds	0	0.5	1.0	1.5	2	2.5	3.0
v in $\mathrm{ft} / \mathrm{sec}$	0	6.2	10.8	14.9	18.1	19.4	20.2

4. Let $f(x)=x^{3}+4$ where $-1 \leq x \leq 6$. Consider the partition $[-1,2],[2,4]$, and $[4,6]$. Find the Riemann Sum where x_{1}, x_{2}, and x_{3} are
a) $-1,2$, and 4
b) 2, 3, and 4
c) 0,4 , and 6
5. If $f(x)=\sqrt{x}$ where $4 \leq x \leq 16$. Consider the partition $[4,6],[6,8],[8,10],[10,12],[12,14]$, and $[14,16]$.
Find the Riemann Sum using the
a) right endpoints
b) left endpoints
c) the midpoints
6. Evaluate $\int_{2}^{10} f(x) d x$ given that $f(x)$ has the graph shown.
a)

b)

7. Use the midpoint rule to estimate the value of $\int_{2}^{10} \sqrt{x^{3}+1} d x$ using 4 rectangles of the same width. Evaluate this integral using your calculator.
8. Use the midpoint rule to estimate the value of $\int_{0}^{3} e^{x / 2} d x$ using 6 rectangles of the same width. Evaluate this integral using your calculator.
9. Evaluate the definite integral $\int_{0}^{10} \sqrt{100-x^{2}} d x$ by evaluating the area under the graph.
10. Evaluate the integral $\int_{-2}^{2} \sin x d x$ by examining the area between the x-axis and the graph.

Solutions

1.

If we use 3 rectangles, then $[-1,2]$ is partitioned into $[-1,0],[0,1]$, and $[1,2]$ where each rectangle has width 1 . If we use the right endpoints, then the rectangles have height $1+0^{2}=1,1+1^{2}=2$, and $1+2^{2}=5$. The sum of the areas of the 3 rectangles is $(1)(1)+(1)(2)+(1)(5)=8$ which is a rough approximation of the area.

If we use 6 rectangles, then the partition of $[-1,2]$ is $[-1,-0.5],[-0.5,0], \ldots,[1.5,2]$. The rectangles have height $1+(-.5)^{2}, 1+0^{2}, \ldots, 1+(2)^{2}$. The area of the 6 rectangles is $\left[1+(-.5)^{2}\right](.5)+\left(1+0^{2}\right)(.5)+\left(1+.5^{2}\right)(.5)+\left(1+1^{2}\right)(.5)+\left(1+1.5^{2}\right)(.5)+\left(1+2^{2}\right)(.5)$ $=6.875$.
2. The graph of v as a function of t is shown below.

The total distance is the area between the t-axis and the graph.
The total area is $(2)(40)+(1)(50)+(2)(40)=210$ and the total distance traveled is 210 miles. Note for the last 2 hours I used the average of 35 and 45 which is 40 mph .
3. The lower estimate is obtained by using v at the left endpoints of the subintervals. So for example, we assume that for the 1st $1 / 2$ second $v=0$, and for the next $1 / 2$ second, $v=6.2$.
Therefore the lower estimate is
$(.5)(0)+(.5)(6.2)+(.5)(10.8)+\ldots+(.5)(19.4)=$ $.5(0+6.2+\cdots+19.4)=34.7$ feet.

The upper estimate uses v at the right endpoints which means for the 1 st $1 / 2$ second we assume $v=6.2$.
The upper estimate is $.5(6.2+10.8+14.9+18.1+19.4+20.2)=44.8$!
4. a) The Riemann sum is

$$
\begin{aligned}
& (3)\left((-1)^{3}+4\right)+(2)\left(2^{3}+4\right)+(2)\left(4^{3}+4\right)= \\
& (3)(3)+(2)(12)+(2)(68)=169
\end{aligned}
$$

b) The Riemann sum is

$$
\begin{aligned}
& (3)\left(2^{3}+4\right)+(2)\left(3^{3}+4\right)+(2)\left(4^{3}+4\right)= \\
& (3)(12)+(2)(31)+(2)(68)=234
\end{aligned}
$$

c) The Riemann sum is

$$
\begin{aligned}
& (3)(0+4)+(2)\left(4^{3}+4\right)+(2)\left(6^{3}+4\right) \\
& (3)(4)+(2)(68)+(2)(220)=588
\end{aligned}
$$

5. a) Using the right endpoints the Riemann sum is

$$
\begin{aligned}
& (2)(\sqrt{6})+(2)(\sqrt{8})+\ldots+(2)(\sqrt{16})= \\
& 2(\sqrt{6}+\sqrt{8}+\sqrt{10}+\sqrt{12}+\sqrt{14}+\sqrt{16})=39.292 \mathbf{l}
\end{aligned}
$$

b) Using the left endpoints the Riemann sum is

$$
\begin{aligned}
& 2 \sqrt{4}+2 \sqrt{6}+\ldots+2 \sqrt{14}= \\
& 2(\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{10}+\sqrt{12}+\sqrt{14})=35.292
\end{aligned}
$$

c) Using the midpoints the Riemann sum is

$$
\begin{aligned}
& 2 \sqrt{5}+2 \sqrt{7}+\ldots+2 \sqrt{15}= \\
& 2(\sqrt{5}+\sqrt{7}+\sqrt{9}+\sqrt{11}+\sqrt{13}+\sqrt{15})=37.354
\end{aligned}
$$

6. a)

The integral is equal to the sum of the areas of the rectangle and the 2 triangles. This total area is $(3)(4)+\frac{1}{2}(3)(4)+\frac{1}{2}(2)(5)=12+6+5=23$.
b)

The integral is equal to the area above the x-axis (blue area) minus the area below the x-axis (red area). This is equal to $\frac{1}{2}(2)(6)-\left(4 \times 2+\frac{1}{2} 2 \times 2\right)=6-10=-4$.
7. If we use 4 rectangles of the same width then the partition is $[2,4],[4,6],[6,8]$, and $[8,10]$.

For most functions, it is best to use the midpoints of the subintervals. This is called the midpoint rule.

$$
\begin{gathered}
\int_{2}^{10} \sqrt{x^{3}+1} d x \approx(2)\left(\sqrt{3^{3}+1}\right)+(2)\left(\sqrt{5^{3}+1}\right)+ \\
(2)\left(\sqrt{7^{3}+1}\right)+(2)\left(\sqrt{9^{3}+1}\right)=124.164
\end{gathered}
$$

Using a calculator, $\int_{2}^{10} \sqrt{x^{3}+1} d x=124.616$.
8. The subintervals are $[0,0.5],[0.5,1], \ldots,[2.5,3]$.

The midpoints are $0.25,0.75,1.25,1.75,2.25$, and 2.75 .

$$
\int_{0}^{3} e^{x / 2} d x=
$$

$0.5\left(e^{.25 / 2}+e^{.75 / 2}+e^{1.25 / 2}+e^{1.75 / 2}+e^{2.25 / 2}+e^{2.75 / 2}\right)=$ 6.945. Using a calculator, $\int_{0}^{3} e^{x / 2} d x=6.963$.
9. The graph of $y=\sqrt{100-x^{2}}, 0 \leq x \leq 10$, is $1 / 4$ of a circle.

The integral is equal to the area which is $\frac{1}{4} \pi r^{2}=\frac{1}{4} \pi(10)^{2}=25 \pi$.
10. $\int_{-2}^{2} \sin x d x$ is equal to the area above the x -axis minus the area below the x-axis.

The red area cancels the blue area and $\int_{-2}^{2} \sin x d x=0$.

