Chapter 6: Practice/review problems
The collection of problems listed below contains questions taken from previous MA123 exams.

Extreme values problems on a closed interval

[1]. Suppose $f(t)=\left\{\begin{array}{lll}\sqrt{4-t} & \text { if } & t<4 \\ \sqrt{t-4} & \text { if } & t \geq 4 .\end{array}\right.$
Find the minimum of $f(t)$ on the interval $[0,6]$.
(a) 0
(b) 2
(c) 4
(d) 6
(e) 8
[2]. Let $g(s)=\frac{s-1}{s+1}$. Find the maximum of $g(s)$ on the interval $[0,2]$.
(a) $-1 / 3$
(b) 0
(c) $1 / 3$
(d) $2 / 3$
(e) Neither the maximum nor the minimum exists on the given interval.
[3]. Suppose $f(t)=\left\{\begin{array}{cl}t^{2}-2 t+2 & \text { if } t<1 \\ t^{3} & \text { if } t \geq 1 .\end{array}\right.$
Find the minimum of $f(t)$ on the interval $[0,2]$.
(a) -1
(b) 0
(c) 1
(d) 2
(e) 8
[4]. Let $f(x)=3 x^{2}+6 x+4$. Find the maximum value of $f(x)$ on the interval $[-2,1]$.
(a) 5
(b) 7
(c) 9
(d) 13
(e) -1
[5]. Let $G(x)= \begin{cases}(x-3)+6 & \text { if } x \geq 3 \\ -(x-3)+6 & \text { if } x<3 .\end{cases}$
Find the minimum of $G(x)$ on the interval $[-10,10]$.
(a) 3
(b) 1
(c) $\quad-6$
(d) 19
(e) 6
[6]. Let $g(s)=\frac{1}{s+1}$. Find the maximum of $g(s)$ on the interval $[0,2]$.
(a) -1
(b) 0
(c) 1
(d) 2
(e) Neither the maximum nor the minimum exists on the given interval.
[7]. Find the minimum value of $f(x)=x^{3}-3 x+3$ on the interval $[-2,4]$.
(a) 2
(b) 1
(c) 0
(d) -1
(e) -2
[8]. Find the maximum of $g(t)=|t+4|+10$ on the interval $[-12,12]$.
(a) 19
(b) 20
(c) 24
(d) 26
(e) 28
[9]. Find the minimum value of $f(x)=\sqrt{x^{2}-2 x+16}$ on the interval $[0,5]$.
(a) 1
(b) 2
(c) $\sqrt{15}$
(d) $\sqrt{12}$
(e) 0
[10]. Let $f(x)=\left|x^{2}-1\right|+2$. Find the minimum of $f(x)$ on the interval $[-3,3]$.
(a) 3
(b) 0
(c) 1
(d) 2
(e) -1
[11]. Suppose $f(t)=2 t^{3}-9 t^{2}+12 t+31$. Find the value of t in the interval $[0,3]$ where $f(t)$ takes on its minimum.
(a) 0
(b) 1
(c) 2
(d) 3
(e) Neither the maximum nor the minimum exists on the given interval.
[12]. Let $Q(t)=t^{2}$. Find a value A such that the average rate of change of $Q(t)$ from 1 to A equals the instantaneous rate of change of $Q(t)$ at $t=2 A$
(a) 1
(b) $\frac{1}{3}$
(c) $\frac{1}{4}$
(d) $\frac{1}{5}$
(e) Does not exist

Mean Value Theorem problems

[13]. Find the value of A such that the average rate of change of the function $g(s)=s^{3}$ on the interval $[0, A]$ is equal to the instantaneous rate of change of the function at $s=1$.
(a) $\sqrt{2}$
(b) $\sqrt{3}$
(c) $\sqrt{5}$
(d) $\sqrt{6}$
(e) $\sqrt{12}$
[14]. Suppose $k(s)=s^{2}+3 s+1$. Find a value c in the interval $[1,3]$ such that $k^{\prime}(c)$ equals the average rate of change of $k(s)$ on the interval $[1,3]$.
(a) -1
(b) 0
(c) 1
(d) 2
(e) 3
[15]. Let $k(x)=x^{3}+2 x$. Find a value of c between 1 and 3 such that the average rate of change of $k(x)$ from $x=1$ to $x=3$ is equal to the instantaneous rate of change of $k(x)$ at $x=c$.
(a) 30
(b) 15
(c) $\sqrt{\frac{28}{3}}$
(d) $\sqrt{\frac{13}{3}}$
(e) 60

Increasing/decreasing problems

[16]. Which function is always increasing on $(0,2)$
(a) $\sqrt{x}+x^{2}$
(b) $x+(1 / x)$
(c) $x^{3}-3 x$
(d) $7-|x|$
(e) $(x-1)^{4}$
[17]. Suppose that a function $f(x)$ has derivative $f^{\prime}(x)=x^{2}+1$. Which of the following statements is true about the graph of $y=f(x)$?
(a) The function is increasing on $(-\infty, \infty)$
(b) The function is decreasing on $(-\infty, \infty)$
(c) The function is increasing on $(-\infty,-1)$ and $(1, \infty)$, and the function is decreasing on $(-1,1)$.
(d) The function is increasing on $(-\infty, 0)$, and the function is decreasing on $(0, \infty)$.
(e) The function is decreasing on $(-\infty, 0)$, and the function is increasing on $(0, \infty)$.
[18]. Find the largest value of A such that the function $g(s)=s^{3}-3 s^{2}-24 s+1$ is increasing on the interval $(-5, A)$.
(a) -4
(b) -2
(c) 0
(d) 2
(e) 4
[19]. Let $f(x)=e^{-x^{2}}$. Find the intervals where $f(x)$ is decreasing.
(a) $(-\infty, 0)$
(b) $(0, \infty)$
(c) $(-\infty,-1)$
(d) $(1, \infty)$
(e) $(-1,1)$
[20]. Let $f(x)=x \ln x$. Find the intervals where $f(x)$ is increasing.
(a) $(0, \infty)$
(b) $(1, \infty)$
(c) (e, ∞)
(d) $(1 / e, \infty)$
(e) $(1 / e, e)$
[21]. Suppose the cost, $C(q)$, of stocking a quantity q of a product equals $C(q)=\frac{100}{q}+q$. The rate of change of the cost with respect to q is called the marginal cost. When is the marginal cost positive?
(a) $q>10$
(b) $q>15$
(c) $q<20$
(d) $q<25$
(e) $q=30$
[22]. For which values of t is the function $t^{3}-2 t+1$ increasing?
(a) $t>\sqrt{2 / 3}$ or $t<-\sqrt{2 / 3}$
(b) $-\sqrt{2 / 3}<t<\sqrt{2 / 3}$
(c) $0<t<\sqrt{4 / 3}$
(d) $-\sqrt{4 / 3}<t<0$
(e) Never
[23]. Suppose that $g^{\prime}(x)=x^{2}-x-6$. Find the interval(s) where $g(x)$ is increasing.
(a) $(-1,2)$
(b) $(-\infty,-2)$ and $(3, \infty)$
(c) $(-\infty,-1)$ and $(2, \infty)$
(d) $(-2,3)$
(e) It cannot be determined from the information given
[24]. Let $f(x)=x e^{2 x}$. Then f is decreasing on the following interval.
(a) $(-\infty,-1 / 2)$
(b) $(-1 / 2, \infty)$
(c) $(-\infty, 1 / 2)$
(d) $(1 / 2, \infty)$
(e) $(-\infty, 0)$
[25]. Find the interval(s) where $f(x)=-x^{3}+18 x^{2}-105 x+4$ is increasing.
(Note that the coefficient of x^{3} is -1 , so compute carefully.)
(a) $(-\infty, 5)$ and $(7, \infty)$
(b) $(5,7)$
(c) $(-\infty,-5)$ and $(7, \infty)$
(d) $(-5,7)$
(e) $(-7,5)$
[26]. Suppose that $f(x)=x g(x)$, and for all positive values of x the function $g(x)$ is negative (i.e., $g(x)<0$) and decreasing. Which of the following is true for the function $f(x)$?
(a) $f(x)$ is negative and decreasing for all positive values of x.
(b) $\quad f(x)$ is positive and increasing for all positive values of x.
(c) $\quad f(x)$ is negative and increasing for all positive values of x.
(d) $\quad f(x)$ is positive and decreasing for all positive values of x.
(e) None of the above.
[27]. Suppose the derivative of a function $g(x)$ is given by $g^{\prime}(x)=x^{2}-1$. Find all intervals on which $g(x)$ is increasing.
(a) $(-\infty, \infty)$
(b) $(-1,1)$
(c) $(-\infty,-1)$ and $(1, \infty)$
(d) $(0, \infty)$
(e) $(-\infty, 0)$

Extreme values problems using the first derivative
[28]. Suppose the derivative of the function $h(x)$ is given by $h^{\prime}(x)=1-|x|$. Find the value of x in the interval $[-1,1]$ where $h(x)$ takes on its minimum value.
(a) $-1 / 2$
(b) -1
(c) 0
(d) $1 / 2$
(e) 1
[29]. Suppose the total cost, $C(q)$, of producing a quantity q of a product equals

$$
C(q)=1000+q+\frac{1}{10} q^{2} .
$$

The average cost, $A(q)$, equals the total cost divided by the quantity produced. What is the minimum average cost? (Assume $q>0$)
(a) 20
(b) 21
(c) 26
(d) 30
(e) 31
[30]. Suppose that a function $h(x)$ has derivative $h^{\prime}(x)=x^{2}+4$. Find the x value in the interval $[-1,3]$ where $h(x)$ takes its minimum.
(a) -1
(b) 3
(c) 5
(d) 13
(e) 29
[31]. Suppose the cost, $C(q)$, of stocking a quantity q of a product equals $C(q)=\frac{100}{q}+q$. Which positive value of q gives the minimum cost?
(a) 10
(b) 15
(c) 20
(d) 25
(e) 30
[32]. Find a local extreme point of $f(x)=\frac{\ln x}{x}$.
(a) $(1,0)$ is a local maximum point.
(b) $(1,0)$ is a local minimum point.
(c) $(e, 1 / e)$ is a local minimum point.
(d) $(e, 1 / e)$ is a local maximum point.
(e) $f(x)$ has no local extreme points.
[33]. Suppose the derivative of $G(q)$ is given by $G^{\prime}(q)=q^{2}(q+1)^{2}(q+2)^{2}$. Find the value of q in the interval $[-5,5]$ where $G(q)$ takes on its maximum.
(a) -5
(b) $\quad-2$
(c) -1
(d) 0
(e) 5
[34]. Suppose the derivative of $H(s)$ is given by $H^{\prime}(s)=s^{2}(s+1)$. Find the value of s in the interval [$-100,100$] where $H(s)$ takes on its minimum.
(a) -100
(b) -1
(c) 0
(d) 1
(e) 100

Concavity problems

[35]. Find the intervals where $f(x)=x^{4}-12 x^{3}+48 x^{2}+10 x-8$ is concave downward.
(a) $(-\infty, \infty)$
(b) $(1, \infty)$
(c) $(-\infty,-4)$ and $(-2, \infty)$
(d) $(-\infty, 2)$ and $(4, \infty)$
(e) $(2,4)$
[36]. Let $f(x)=e^{-x^{2}}$. Find the intervals where $f(x)$ is concave upward.
(a) $(1, \infty)$
(b) $(-e, e)$
(c) $(-\infty,-\sqrt{1 / 2})$ and $(\sqrt{1 / 2}, \infty)$
(d) $(-\sqrt{1 / 2}, \sqrt{1 / 2})$
(e) $(-\infty,-e)$ and (e, ∞)
[37]. Let $f(x)=x \ln x$. Find the intervals where $f(x)$ is concave downward.
(a) $(0,1)$
(b) $(0, \infty)$
(c) $(0,1 / e)$
(d) $(1 / e, \infty)$
(e) $f(x)$ is not concave downward anywhere
[38]. Suppose that the derivative of $f(x)$ is given by $f^{\prime}(x)=x^{2}-5 x+6$. Then the graph of $f(x)$ is concave downward on the following intervals(s).
(a) $(-\infty, 2)$ and $(3, \infty)$
(b) $(2,3)$
(c) $(-\infty, 2.5)$
(d) $(2.5, \infty)$
(e) $f(x)$ in not concave downward on any interval
[39]. Find the interval(s) where the graph of $f(x)=x^{4}+18 x^{3}+120 x^{2}+10 x+50$ is concave downward.
(a) $(-5,4)$
(b) $(4,5)$
(c) $(-\infty, 4)$ and $(5, \infty)$
(d) $(-5,-4)$
(e) $(-\infty,-5)$ and $(-4, \infty)$

